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Onsager-Casimir reciprocity relation for the gyrothermal effect with polyatomic gases

Felix Sharipov*
Departamento de Fı´sica, Universidade Federal do Parana´, Caixa Postal 19081, 81531-990 Curitiba, Brazil

~Received 18 December 1998!

On the basis of the linearized Boltzmann equation and the boundary condition for the distribution function,
the Onsager-Casimir reciprocity relation is derived for polyatomic gases confined between two cylinders in the
presence of a magnetic field. The cross effect, namely, the heat flux caused by the rotation of the inner cylinder
is predicted. Because of the heat flux the cylinder can be heated or cooled depending on the direction of the
magnetic field. This effect is coupled with the gyrothermal effect by the reciprocity relation.
@S1063-651X~99!10805-5#

PACS number~s!: 05.70.Ln
as

a
xia
io
,

qu
ca
io
ro
y

ef
th

a

la
te
d

-

th

ith

ince
its

s by

e
cal
m

ud-
e

the
d,

-
ry
s.
es,

um
-
the

ju-

e-

istic
ter-
er
ly-
I. INTRODUCTION

The gyrothermal effect with polyatomic gases w
pointed out by Scott and co-workers@1–4#. Then, it was
confirmed by many experimentalists@5–13# and explained
theoretically@14–18#. The effect is as follows: Consider
gas of polyatomic molecules confined between two coa
cylinders in the presence of a magnetic field in the direct
of the axis. If the cylinders have different temperatures
torque appears between them.

The effect is of great scientific interest because the tor
is very sensitive to the gas-surface interaction law, and
be used as a test for theoretical models of the interact
Moreover, the effect can be used in practice, e.g., in mic
systems. From the viewpoint of nonequilibrium thermod
namics@19#, the gyrothermal effect is a so-called cross
fect, and it is related to another conjugated effect via
Onsager-Casimir reciprocity relation@20,21#. The aim of the
present paper is to indicate the conjugated cross effect,
to obtain its reciprocity relation to the gyrothermal effect.

II. RECIPROCITY RELATION

The main idea of the Onsager-Casimir reciprocity re
tions~OCRR’s! is as follows: In a weak nonequilibrium sta
all irreversible phenomena arising in the system can be
scribed in the linear form

Jk5(
n

Lkn~H!Xn , ~1!

whereXk are thermodynamic forces,Jk are conjugated ther
modynamic fluxes andLkn(H) are kinetic coefficients which
depend on the magnetic fieldH. If the thermodynamic forces
and fluxes are chosen so that the entropy production in
system has the form of the sum

s5(
k

JkXk , ~2!
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the kinetic coefficientsLkn(H) are coupled by the OCRR’s
as

Lkn~H!5«k«nLnk~2H!, ~3!

where«k561 is the parity of the forceXk with respect to
the time reversal.

Onsager@20# obtained relations~3! for insulated systems
considering only forces which do not change their sign w
the time reversal, i.e., only for odd forces. Then Casimir@21#
generalized the relations for both odd and even forces. S
a system of two cylinders with different temperatures adm
the heat exchange with the environment, the approache
Onsager and Casimir are not appropriate for it.

De Groot and Mazur@19# developed an approach to th
OCRR’s, which allows one to consider open systems in lo
equilibrium. For gaseous systems the local equilibriu
means that the molecular mean free pathl is essentially
smaller than the distance between the cylindersd. However,
the gyrothermal effect becomes significant when the Kn
sen number Kn5l/d is close to the unity, i.e., when th
mean free path has the order of the distance between
cylinders. In this regime the local equilibrium is violate
and the approach by de Groot and Mazur@19# is also not
suitable.

Cercignani@22–24# developed the formalism of the sym
metry of the linearized Boltzmann equation with bounda
condition for the distribution function of monoatomic gase
Based upon this formalism generalized for polyatomic gas
OCRR’s for open gaseous systems not in local equilibri
were obtained in Refs.@25–27#, where some typical applica
tions were shown. In the present paper this approach to
OCRR’s is applied to the gyrothermal effect and the con
gated effect.

III. BASIC EQUATIONS

A gas of polyatomic molecules is described by the on
particle distribution functionf (t,r ,v,M ), wheret is the time,
r is the position vector,v is the molecular velocity, andM is
an angular moment of a molecule. Since the character
rotational temperature is usually small, while the charac
istic vibrational temperature is very high, we may consid
the rotation as classical, and neglect the vibration of po
5128 ©1999 The American Physical Society
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atomic molecules in the wide range of the temperature,
from 100 to 1000 K.

The distribution function obeys the Boltzmann equatio
which in the presence of a magnetic field reads@28#

] f

]t
1v•

] f

]r
1g@M3H#•

] f

]M
5Q~ f f * !, ~4!

whereQ( f , f * ) is a collision integral having the following
form:

Q~ f , f * !5E w~ f 8 f
*
8 2 f f * !dG* dG8dG

*
8 .

Here the notationG5(v,M ) has been introduced. Moreove
the affixes tof correspond to those of their argumentG: f *
5 f (t,r ,G* ) and f 85 f (t,r ,G8). The function w
5w(G,G* ;G8,G

*
8 ) is the probability density of the trans

tion from the states (G,G* ) to the states (G8,G
*
8 ) in a binary

collision. Further we will consider a stationary gas flow a
the variablet will be omitted.

We apply the boundary condition assuming that all in
dent molecules are reflected by surface, i.e., there are
evaporation and condensation on the surface:

uvnu f 1~r ,G!5E
vn8,0

uvn8uR~r ,G8→G! f 2~r ,G8!dG8. ~5!

Here f 1 is the distribution function of particles leaving th
surface,f 2 is the distribution function of incident particles
andvn is the normal velocity component. The scattering k
nel R(r ,G8→G) satisfies the normalizations condition

E
vn.0

R~r ,G8→G!dG51 ~6!

and the reciprocity condition

uvn8u f w~G8!R~r ,G8→G!5uvnu f w~G!R~r ,2G→2G8!,
~7!

where2G5(2v,2M ), and f w is the surface Maxwellian:

f w5
P0

kTw
F~Tw!expF2

m~v2uw!2

2kTw
2

Er~M !

kTw
G ,

F~T!5S m

2pkTD 3/2F E expS 2
Er~M !

kT DdM G21

, ~8!

Tw is the surface temperature;uw is the surface velocity,
which has a tangential component only;P0 is the equilibrium
pressure; andEr(M ) is the rotation energy.

In case of a weak nonequilibrium state, the linearization
performed as

f ~r ,G!5 f 0~G!@11h~r ,G!#, uhu!1, ~9!

where f 0 is the equilibrium Maxwellian:
y

,

-
no

-

s

f 0~G!5
P0

kT0
F~T0!expF2

E~G!

kT0
G ,

E~G!5
mv2

2
1Er~M !. ~10!

T0 is the equilibrium temperature.
Substituting Eq.~9! into Eq. ~4!, one obtains the linear

ized Boltzmann equation

D̂~H!h2L̂h50, ~11!

whereD̂ is the differential operator containingH,

D̂~H!5v•
]

]r
1g@M3H#•

]

]M
,

and L̂ is the linear collision operator,

L̂h5E w f0~G* !~h81h
*
8 2h2h* !dG* dG8dG

*
8 .

Substituting Eq.~9! into Eq. ~5!, the linearized boundary
condition is obtained:

h15Âh21hw2Âhw ,

Âh25
1

uvnu f 0~G!
E

vn8,0
uvn8u f 0~G8!h~G8!R~G8→G!dG8,

wherehw is the perturbation of the surface Maxwellian:

f w5 f 0~11hw!.

With the help of Eqs.~8! and ~10!, one obtains the expres
sion of hw as

hw5
m

kT0
~v•uw!1S E~G!

kT0
2u D Tw2T0

T0
,

u5
1

P0
E Er~M ! f 0~G!dG1

5

2
. ~12!

The detailed linearization of the boundary condition can
found in works by Cercignani@23,24#.

It should be noted that in the problem in question t
perturbation functionhw determines the only source of th
non-equilibrium via the quantitiesuw and Tw , i.e., if uw
50 andTw50 the system will be in equilibriumh50.

Let us introduce the scalar products

~f,c!5E f 0f~r ,G!c~r ,G!dG,

„~f,c!…5E
R

~f,c!dr ,

whereR is the region occupied by the gas. Moreover, w
will use the operator of the time reversal

T̂f~r ,G!5f~r ,2G!.
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The linear collision operatorL̂ satisfies the well-known
relation @28#

„~ T̂L̂f,c!…5„~ T̂L̂c,f!…. ~13!

With the help of~6! and ~7! it can be proved that

„~ T̂D̂~H!f,c!…1E
]R

~ T̂vnfw ,c!dS

5„~ T̂D̂~2H!c,f!…1E
]R

~ T̂vncw ,f!dS, ~14!

where]R is the surface bounding the regionR, andfw and
cw are different perturbations of the surface Maxwellian c
responding to the solutionsf andc, respectively.

IV. DEFINITION OF THE KINETIC COEFFICIENTS

If a set of the small parametersXk are used for the linear
ization, the perturbation of the surface Maxwellianhw and
the corresponding solutionh can be decomposed as

hw~r ,G!5(
k

hw
(k)~r ,G!Xk , ~15!

h~r ,G!5(
k

h(k)~r ,G!Xk . ~16!

In previous works@26# it was proved that the entrop
production in a gaseous system has the following express

s5E
]R

~vnhw ,h!dS. ~17!
of
a

-

n:

The presence of the magnetic field does not change it. S
stituting Eq.~15! into Eq.~17!, one can see that to satisfy E
~2! the thermodynamic fluxes must be defined as

Jk5E
]R

~vnhw
(k) ,h!dS, ~18!

if Xk are assumed to be thermodynamic forces. Substitu
Eq. ~16! into Eq.~18! and comparing the results with Eq.~1!,
we conclude that the kinetic coefficients have the form

Lkn~H!5E
]R

~vnhw
(k) ,h(n)!dS, ~19!

whereh(n) depends onH.
To prove the OCRR~3! we assume that the functionh(n)

satisfies Eq.~11! with D̂(H), while the functionh(k) satisfies
the same kinetic equation withD̂(2H), i.e.,

D̂~H!h(n)2L̂h(n)50, ~20!

D̂~2H!h(k)2L̂h(k)50. ~21!

Then the kinetic coefficientLkn(H) has the form of Eq.~19!,
while the coefficientLnk(2H) has the form

Lnk~2H!5E
]R

~vnhw
(n) ,h(k)!dS. ~22!

The set of the thermodynamic forcesXk can be always
chosen so that the functionshw

(k) could be even or odd with
respect to the time reversal, i.e.,

T̂@vnhw
(k)~r ,G!#5«k@vnhw

(k)~r ,G!#, «k561. ~23!

Combining Eqs.~13!, ~14! and ~19!–~23!, we have
Lkn~H!5E
]R

~vnhw
(k) ,h(n)!dS5«kE

]R
~ T̂vnhw

(k) ,h(n)!dS

5«kF „~ T̂D̂~2H!h(k),h(n)!…2„~ T̂L̂h(k),h(n)!…1E
]R

~ T̂vnhw
(k) ,h(n)!dSG

5«kF „~ T̂D̂~H!h(n),h(k)!…2„~ T̂L̂h(n),h(k)!…1E
]R

~ T̂vnhw
(n) ,h(k)!dSG

5«k«nE
]R

~vnhw
(n) ,h(k)!dS5«k«nLnk~2H!. ~24!
ic
ag-
The OCRR~3! has been proved.
Further, the kinetic coefficients will be given in terms

the following moments of the distribution function: The he
flux vector

q5„v~E2kT0u!,h…, ~25!

and the viscous stress tensor
t

s i j 5P0d i j 2~mv iv j ,h!, ~26!

whered i j is the Kronecker symbol.

V. RECIPROCITY RELATION FOR THE
GYRO-THERMAL EFFECT

Consider a weak nonequilibrium state of the polyatom
gas confined between two cylinders in the presence of m
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netic field disturbed by two factors.
~1! The surface temperatureTw of the inner cylinder

slightly differs from the equilibrium temperatureT0, i.e.,

uTw2T0u
T0

!1,

while the outer cylinder has a temperatureT0.
~2! The inner cylinder rotates slowly so that its surfa

velocity uw is small,

S m

2kT0
D 1/2

uuwu!1,

while the external cylinder is at rest. Thus, two thermod
namic forces can be introduced as

Xu5S m

2kT0
D 1/2

uw , XT5
Tw2T0

T0
.

Performing the decomposition~15! with the help of Eq.~12!,
one obtains two components of the surface Maxwellian p
turbationhw on the inner cylinder

hw
(u)52S m

2kT0
D 1/2

vw , hw
(T)5

E~G!

kT0
2u, ~27!

wherevw is the azimuthal velocity of molecule. Substitutin
Eq. ~27! into Eq. ~18!, we obtain the explicit expressions o
the thermodynamic fluxes

Ju52
1

R S 2

mkT0
D 1/2

t, JT5
Q

kT0
, ~28!

wheret is the torque acting on the inner cylinder

t52RE
]R

snwdS522pR2Lsnw , ~29!

R is the radius of the inner cylinder,L is its length;snw is the
viscous stress tensor defined by Eq.~26! and calculated on
the inner cylinder surface;Q is the total heat flux from the
inner cylinder to the outer one,

Q5E
]R

qndS52pRLqn ; ~30!

andqn is the normal component of the heat flow vector d
fined by Eq.~25! and calculated on the inner cylinder su
face. Since we assume the cylinders to be very long, it
been considered that the quantitiessnw and qn do not vary
along the cylinders, and that the integration in Eqs.~29! and
~30! is performed only over the lateral surface of the inn
cylinder.

The perturbation functionh is decomposed as

h5h(u)Xu1h(T)XT . ~31!
-

r-

-

s

r

Substituting Eq.~31! into Eq. ~25! and~26! with the help of
Eqs. ~29! and ~30! one can see that the torque and the to
heat flux are decomposed too:

t5tuXu1tTXT , Q5QuXu1QTXT . ~32!

Substituting Eq.~32! into Eq. ~28! and comparing the resul
with Eq. ~1!, one obtains the expressions of the kinetic co
ficients

Luu52
1

R S 2

mkT0
D 1/2

tu ,

LuT52
1

R S 2

mkT0
D 1/2

tT , ~33!

LTu5
1

kT0
Qu , LTT5

1

kT0
QT . ~34!

The physical sense of the kinetic coefficients is as f
lows: Luu is related to the torquetu caused by the cylinde
rotation. This is the ordinary phenomenon of momentu
transfer.LuT is related to the torquetT caused by the tem
perature difference. This is the gyrothermal effect.LTT is the
heat fluxQT between the cylinders caused by the tempe
ture difference. This is the ordinary phenomenon of h
transfer.LTu is related to the heat fluxQu caused by the
cylinder rotation. This is the predicted cross effect, which
coupled with the gyrothermal effect.

According to the definition of the parities~23! we have
«u51 and«T521. Then the OCRR~3! takes the form

LuT~H!52LTu~2H!. ~35!

Taking into account the expressions ofLuT and LTu , we
obtain the coupling between the cross effects:

tT~H!5RS m

2kT0
D 1/2

Qu~2H!. ~36!

So it was shown that the heat flux between two cylind
confining a polyatomic gas in the presence of magnetic fi
appears if one of the cylinders rotates. The sign of the h
flux depends on the direction of the magnetic field. Thus
effect can both heat and cool the cylinder. The predic
cross effect is coupled with the known gyrothermal effec
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