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Onsager-Casimir reciprocity relation for the gyrothermal effect with polyatomic gases
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On the basis of the linearized Boltzmann equation and the boundary condition for the distribution function,
the Onsager-Casimir reciprocity relation is derived for polyatomic gases confined between two cylinders in the
presence of a magnetic field. The cross effect, namely, the heat flux caused by the rotation of the inner cylinder
is predicted. Because of the heat flux the cylinder can be heated or cooled depending on the direction of the
magnetic field. This effect is coupled with the gyrothermal effect by the reciprocity relation.
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I. INTRODUCTION the kinetic coefficients\,(H) are coupled by the OCRR’s
as
The gyrothermal effect with polyatomic gases was
pointed out by Scott and co-workef&—4]. Then, it was An(H)=grenAn(—H), 3

confirmed by many experimentalisf5—13] and explained

theoretically[14—-18. The effect is as follows: Consider a whereg, = +1 is the parity of the force, with respect to
gas of polyatomic molecules confined between two coaxiathe time reversal.

cylinders in the presence of a magnetic field in the direction Onsage[20] obtained relation$3) for insulated systems
of the axis. If the cylinders have different temperatures, eonsidering only forces which do not change their sign with
torque appears between them. the time reversal, i.e., only for odd forces. Then Cas|2if]

The effect is of great scientific interest because the torqugeneralized the relations for both odd and even forces. Since
is very sensitive to the gas-surface interaction law, and caa system of two cylinders with different temperatures admits
be used as a test for theoretical models of the interactiorthe heat exchange with the environment, the approaches by
Moreover, the effect can be used in practice, e.g., in microOnsager and Casimir are not appropriate for it.
systems. From the viewpoint of nonequilibrium thermody- De Groot and Mazuf19] developed an approach to the
namics[19], the gyrothermal effect is a so-called cross ef-OCRR'’s, which allows one to consider open systems in local
fect, and it is related to another conjugated effect via theequilibrium. For gaseous systems the local equilibrium
Onsager-Casimir reciprocity relati¢@0,21]. The aim of the means that the molecular mean free pattis essentially
present paper is to indicate the conjugated cross effect, argialler than the distance between the cylinderslowever,
to obtain its reciprocity relation to the gyrothermal effect. the gyrothermal effect becomes significant when the Knud-
sen number Kr\/d is close to the unity, i.e., when the
mean free path has the order of the distance between the
cylinders. In this regime the local equilibrium is violated,

The main idea of the Onsager-Casimir reciprocity rela-and the approach by de Groot and Mazlig] is also not
tions (OCRR’S is as follows: In a weak nonequilibrium state suitable.
all irreversible phenomena arising in the system can be de- Cercignani22—24 developed the formalism of the sym-
scribed in the linear form metry of the linearized Boltzmann equation with boundary

condition for the distribution function of monoatomic gases.
Based upon this formalism generalized for polyatomic gases,
=2 Aun(H)X,, (1) OCRR'’s for open gaseous systems not in local equilibrium
n were obtained in Ref$25-27), where some typical applica-
tions were shown. In the present paper this approach to the
whereX, are thermodynamic forced, are conjugated ther- OCRR'’s is applied to the gyrothermal effect and the conju-
modynamic fluxes and ,(H) are kinetic coefficients which gated effect.
depend on the magnetic fieldl. If the thermodynamic forces
and fluxes are chosen so that the entropy production in the ll. BASIC EQUATIONS
system has the form of the sum

Il. RECIPROCITY RELATION

A gas of polyatomic molecules is described by the one-
particle distribution functiorf (t,r,v,M), wheret is the time,
U:E I X, 2) r is the position vectow is the molecula}r velocity, anil is o
K an angular moment of a molecule. Since the characteristic
rotational temperature is usually small, while the character-
istic vibrational temperature is very high, we may consider
*Electronic address: sharipov@fisica.ufpr.br the rotation as classical, and neglect the vibration of poly-
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atomic molecules in the wide range of the temperature, say Po E(I)
from 100 to 1000 K. fo(I) =7 P(Toexp — 15|,
The distribution function obeys the Boltzmann equation, 0
which in the presence of a magnetic field ref2ig] mo?2
E(F)=T+Er(M). (10

&f+ af+ [M><H] =Q(ff,), (4)
—_— V —_— =
aJt ar 7 T, is the equilibrium temperature.

Substituting Eq.(9) into Eq. (4), one obtains the linear-
whereQ(f,f,) is a collision integral having the following ized Boltzmann equation

form: R R
D(H)h—Lh=0, (11)
Q(f’f*):f w(f'f, —ff,)dl,dl"dl . whereD is the differential operator containirtd,
. . J
Here the notatiod’=(v,M) has been introduced. Moreover, » =v. — S —
D(H)=v ﬁr+y[M><H] M

the affixes tof correspond to those of their argumdrt f,
=f(t,r,I',) and f'=f(t,r,I''). The function w
—w(I',T', :T"",T'.) is the probability density of the transi- andL is the linear collision operator,
tion from the statesI{,I",.) to the statesI{’,I"} ) in a binary
collision. Further we will consider a stationary gas flow and Lh= f wfo(l,)(h'+h, —h—h,)dl,dl'"dTl"., .
the variablet will be omitted.
We apply the boundary condition assuming that all inci- Substituting Eq.(9) into Eq. (5), the linearized boundary
dent molecules are reflected by surface, i.e., there are N9 ndition is obtained:
evaporation and condensation on the surface:

h*=Ah"+h,—Ah,,
|vn|f*(r,I‘)=f, lo/|R(r, T =)~ (r,I'")dl". (5)
vn<0

1
Ah™=——— "fo(T)h(I')R(I' —=T)dI'’,

Heref™ is the distribution function of particles leaving the

surface,f™ is the distribution function of incident particles, whereh,, is the perturbation of the surface Maxwellian:
andv, is the normal velocity component. The scattering ker-

nel R(r,I'' —T) satisfies the normalizations condition fu=fo(1+hy).

With the help of Egs(8) and(10), one obtains the expres-
f R(r,I''—=I')dI'=1 (6) sion ofh,, as
vn>0

hw=

m E(T) Taw—To
and the reciprocity condition e = (V-Uy) + KT, -0 T,
loal f(T R, T =) =v|[f(T)R(r,—T——=T"), 1 5
) f= P_of E(M)fo(T)dl + 3. (12)

where —T'=(-v,—M), andf,, is the surface Maxwellian:  The detailed linearization of the boundary condition can be
found in works by Cercignarii23,24].

It should be noted that in the problem in question the
perturbation functiorh,, determines the only source of the
non-equilibrium via the quantities,, and T,,, i.e., if uy
-1 =0 andT,=0 the system will be in equilibriunh=0.

., (8 Let us introduce the scalar products

Po m(v—uy)® E;(M)
=i, P(Twe Xp[ 2KT, KTy,

*m= (2 kT)S/ZU ”( E(M)

T, is the surface temperatures, is the surface velocity, (¢,‘//):f fodp(r,I)y(r,I)dI,
which has a tangential component oy is the equilibrium
pressure; and, (M) is the rotation energy.

In case of a weak nonequilibrium state, the linearization is ((¢,9))= JR(qS,://)dr
performed as

whereR is the region occupied by the gas. Moreover, we
f(r,I)=fo(I)[1+h(r, )], |h|<1, (9 will use the operator of the time reversal

wheref, is the equilibrium Maxwellian: To(r,I)=¢(r,—T).
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The linear collision operatot satisfies the well-known The presence of the magnetic field does not change it. Sub-
relation[28] stituting Eq.(15) into Eq.(17), one can see that to satisfy Eq.
(2) the thermodynamic fluxes must be defined as

(TL,9))=((TL, ¢)). (13

Jk:f (v,h( hyds, (19
With the help of(6) and(7) it can be proved that IR

if X, are assumed to be thermodynamic forces. Substituting

oA A Eq. (16) into Eq.(18) and comparing the results with Ed,),

(TD(H) ¢, 9))+ LR(TUH‘Z’W"MOIS we conclude that the kinetic coefficients have the form

~(BC-Ho)+ | (o pids a9 MlH)= [ oo 005 19
IR

wheredR is the surface bounding the regi® and¢,, and whereh(™ depends orH. .
o, are different perturbations of the surface Maxwellian cor- 10 Prove the OCRR3) we assume that the functidr
responding to the solutiong and ¢, respectively. satisfies Eq(11) with D(H), while the functiorh® satisfies
the same kinetic equation with(—H), i.e.,
IV. DEFINITION OF THE KINETIC COEFFICIENTS R R
D(H)h(W—LhM=0, (20)
If a set of the small parameteXxs are used for the linear-
ization, the perturbation of the surface Maxwelliap and D(—H)h®W—-Lh®=0. (22)
the corresponding solutiom can be decomposed as
Then the kinetic coefficienk,(H) has the form of Eq(19),

hW(r,F)=E h\(,f)(r,l“)xk, (15 while the coefficientA , (—H) has the form
K

An=H)= [ (@i h)ds 22

IR
h(r.[)=2 h®(r,1)X,. (16)
k The set of the thermodynamic forc&g can be always

chosen so that the functiom§ could be even or odd with

In previous works[26] it was proved that the entro . .
P L26] P by fiespect to the time reversal, i.e.,

production in a gaseous system has the following expressio
Tl h(r,T)]1=efv b, T)], g==+1. (23

a'=f (vphy,h)dS (17 o
IR Combining Eqs(13), (14) and(19—(23), we have

Akn(H):J’ (Unh\(,\i,(),h(n))dS:ng’ (?Unh\(l\t(),h(n))ds
IR IR

:Sk

(FB(—H)h®,h™M))— (FLh®,h(M)) + f (Toohly ’h(n))ds}
IR

:Sk

((?E)(H)hm),h(k)))—((?Eh<">,h<k>))+f (?unhgvf‘),h(k))ds}
IR

:Sksnf (0 h)dS=eyen Aoy —H). (24)

The OCRR(3) has been proved. 0ij=Podij— (mvjv; ,h), (26)
Further, the kinetic coefficients will be given in terms of

the following moments of the distribution function: The heatwhere §;; is the Kronecker symbol.

flux vector

V. RECIPROCITY RELATION FOR THE
q=((E—kTy6),h), (25) GYRO-THERMAL EFFECT

Consider a weak nonequilibrium state of the polyatomic
and the viscous stress tensor gas confined between two cylinders in the presence of mag-
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netic field disturbed by two factors. Substituting Eq(31) into Eq. (25 and(26) with the help of
(1) The surface temperatur€,, of the inner cylinder Egs.(29) and(30) one can see that the torque and the total
slightly differs from the equilibrium temperatuig, i.e., heat flux are decomposed too:
|TWT;TO|<1, =1 Xyt 71X, Q= QuXy+QrXr. (32
0

Substituting Eq(32) into Eq. (28) and comparing the result

while the outer cylinder has a temperatdr, ; X . .
y P & with Eq. (1), one obtains the expressions of the kinetic coef-

(2) The inner cylinder rotates slowly so that its surface

velocity u,, is small, ficients
m |2 N 1 2 12
(ﬁ) |un| <1, w= TR mkT,) ™™
while the external cylinder is at rest. Thus, two thermody- 1/ 2 \u2
namic forces can be introduced as Ayr=— ﬁ( kaO) r, (33)
m |12 T -7
Ko=) e X 1 1
AT”_k_TOQ”’ ATT_k_TOQT- (39

Performing the decompositiqd5) with the help of Eq(12),
one obtains two components of the surface Maxwellian per-

turbationh,, on the inner cylinder The physical sense of the kinetic coefficients is as fol-

lows: A, is related to the torque, caused by the cylinder
m |12 E(T) rotation. This is the ordinary phenomenon of momentum
) v, SVT):__ 0, (27) transfer.A 1 is related to the torque; caused by the tem-
2kTo) ¢ kTo perature difference. This is the gyrothermal efféct; is the
heat fluxQ; between the cylinders caused by the tempera-
wherev, is the azimuthal velocity of molecule. Substituting tyre difference. This is the ordinary phenomenon of heat
Eq. (27) into Eq.(18), we obtain the explicit expressions of transfer. A+, is related to the heat fluQ, caused by the

h{) =2

the thermodynamic fluxes cylinder rotation. This is the predicted cross effect, which is
1o coupled with the gyrothermal effect.
3 i( 2 ) :& 28) According to the definition of the paritie®3) we have
u R\ mkT, T KTy g,=1 andet=—1. Then the OCRRB3) takes the form

where 7 is the torque acting on the inner cylinder
Ayr(H)==Agy(=H). (35

T=— Rf 04, dS=—27RLay,, (29 o _
IR Taking into account the expressions &f and A1, we

obtain the coupling between the cross effects:
R s the radius of the inner cylindel,is its length;o,, is the
viscous stress tensor defined by Eg6) and calculated on

the inner cylinder surfaced is the total heat flux from the [ m |\
inner cylinder to the outer one, 7r(H)=R 2kT, Qu(—H). (36)
_ _ . So it was shown that the heat flux between two cylinders
Q= Land S=27RLG; (30 confining a polyatomic gas in the presence of magnetic field

appears if one of the cylinders rotates. The sign of the heat
andgq, is the normal component of the heat flow vector de-flux depends on the direction of the magnetic field. Thus the
fined by Eq.(25) and calculated on the inner cylinder sur- €ffect can both heat and cool the cylinder. The predicted
face. Since we assume the cylinders to be very long, it hagross effect is coupled with the known gyrothermal effect.
been considered that the quantities, andq, do not vary
along the cylinders, and that the integration in E@8) and
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